首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   4篇
电工技术   1篇
综合类   5篇
化学工业   6篇
金属工艺   18篇
机械仪表   5篇
能源动力   12篇
无线电   7篇
一般工业技术   34篇
自动化技术   5篇
  2023年   4篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   3篇
  2012年   12篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   2篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
对一种被动式微型直接甲醇燃料电池进行了设计、制作及测试.利用微模具成型工艺,以ABS为基底材料制作了电池双极端板.采用200 μm厚的不锈钢薄片作为集电极,利用激光切割技术制作进料通道,并在集电极两侧溅射金层以防止电化学腐蚀.有效面积为0.49 cm2的膜电极则采用催化剂覆盖电解质膜的方法制备而成.测试结果表明,室温环境下(25℃)该被动式微型直接甲醇燃料电池在甲醇浓度为6 mol/L时最大功率密度可达22.14 mW/cm2.该性能对于被动式直接甲醇燃料电池的便携式高性能应用具有较大意义.  相似文献   
2.
《Energy》2006,31(14):2739-2749
This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 °C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods.  相似文献   
3.
4.
Single-atom Fe–N–C (Fe1–N–C) materials represent the benchmarked electrocatalysts for oxygen reduction reaction (ORR). However, single Fe atoms in the carbon skeletons cannot be fully utilized due to the mass transfer limitation, severely restricting their intrinsic ORR properties. Herein, a self-sacrificing template strategy is developed to fabricate ultrathin nanosheets assembled Fe1–N–C hollow microspheres (denoted as Fe1/N-HCMs) by rational carbonization of Fe3+ chelating polydopamine coated melamine cyanuric acid complex. The shell of Fe1/N-HCMs is constructed by ultrathin nanosheets with thickness of only 2 nm, which is supposed to be an ideal platform to isolate and fully expose single metal atoms. Benefiting from unique hierarchical hollow architecture with highly open porous structure, 2 nm-thick ultrathin nanosheet subunits and abundant Fe–N4O1 active sites revealed by X-ray absorption fine structure analysis, the Fe1/N-HCMs exhibit high ORR performance with a positive half-wave potential of 0.88 V versus the reversible hydrogen electrode and robust stability. When served as air-cathode catalysts with ultralow loading mass of 0.25 mg cm−2, Fe1/N-HCMs based Zn–air batteries present a maximum power density of 187 mW cm−2 and discharge specific capacity of 806 mA h gZn−1 in primary Zn–air batteries, all exceeding those of commercial Pt/C.  相似文献   
5.
Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas–Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton–exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2Al2SiP2TiO13) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.  相似文献   
6.
A new low noise interface circuit for detecting weak current of micro-sensors is designed.By using the transimpedance amplifier to substitute the charge amplifier,the closed-loop circuit can avoid the phase error of the charge amplifier.Therefore,the phase compensation devices will be cancelled,because there is no phase transformation through the transimpedance amplifier.As well as,by using CCCII devices to implement the high value feedback resistor of the impedance amplifier,the noise of the I-V transformation devices is reduced,comparing with the passive resistor.The floating resistor is easy to be integrated into chips,making the integration of the interface circuit of the intelligent sensors increase.Through the simulation,the phase error of the charge amplifier is almost 9°at 2 kHz and it changes with the working frequency of the micro-sensors making the phase compensation not easy.The value of the floating resistor is 250 kΩ where the bias current is 50 μA.The noise of the active resistor is 0.037 fV2/Hz,comparing with the noise of the passive resistor,which is 4.14 fV2/Hz.  相似文献   
7.
8.
The technique of wire electrochemical micro machining (WECMM) is proposed firstly for the micropatterning of Ni-based metallic glass in this paper. Metallic glass (MG) exhibits many outstanding properties such as high hardness and strength, which enable it to be used as functional and structural materials in micro electromechanical systems (MEMS). A significant limitation to the application of MGs is the challenge of shaping them on micro scale. WECMM is a non-traditional machining technique to fabricate microstructures that has some unique advantages over other methods, which will be a promising technique for micro shaping of metallic glass structures. Taking the example of a Ni-based glassy alloy, Ni72Cr19Si7B2, the polarization and fabrication characteristic in dilute hydrochloric acid electrolyte were investigated. Changes in the machined slit width in terms of several experimental parameters were investigated to find the optimal ones. Finally, the optimal machining parameters: HCl electrolyte concentration of 0.1 M, applied voltage of 4.5 V, pulse duration of 80 ns, pulse period of 3 μs and feed rate of 0.3 μm s−1 were employed for the fabrication of microstructures. Such as a micro square helix with a slit width of 14.0 μm, standard deviation of 0.2 μm and total length up to 2000 μm, along with a micro pentagram structure with side length of 90 μm and sharp corner of 36°, were machined with a high level of stability and accuracy.  相似文献   
9.
In microscale deformation, the magnitudes of specimen and grain sizes are usually identical, and sizedependent phenomena of deformation behavior occur, namely, size effects. In this study, size effects in microcylindrical compression were investigated experimentally. It was found that, with the increase of grain size and decrease of specimen size, flow stress decreases and inhomogeneous material flow increases. These size effects tend to be more distinct with miniaturization. Thereafter, a modified model considering orientation distribution of surface grains and continuity between surface grains and inner grains is developed to model size effects in microforming. Through finite element simulation, the effects of specimen size, grain size, and orientation of surface grains on the flow stress and inhomogeneous deformation were analyzed. There is a good agreement between experimental and simulation results.  相似文献   
10.
基于MEMS技术的微型直接甲醇燃料电池的设计与制作   总被引:2,自引:1,他引:1  
研制了一种硅基微型直接甲醇燃料电池,其具有结构简单、质量轻、体积小以及比能量密度高等特点对点型、螺旋蛇型和栅型等流场结构进行优化设计模拟,从而为燃料电池极板设计提供可靠的依据.利用MEMS技术完成了这种微型直接甲醇燃料电池的制作,在对不同流场结构的实验研究中,发现栅型流场结构的微型直接甲醇燃料电池性能要好于其他流场结构,这与仿真结果一致.在常温下,当甲醇溶液物质的量浓度为1.5mol/L时,微型直接甲醇燃料电池最大输出功率密度为5.9mW/cm^2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号